
Single Event Effects
Benjamin William Mezger

Computer Engineering
University of Vale do Itajaı́ (UNIVALI)

Florianópolis, Brazil
me@benmezger.nl

Abstract—With the trend of higher density devices targeting
faster processing and lower requirement of electric charge, a
comparable amount of charge can be generated in the semicon-
ductor by the passage of cosmic rays or alpha particles. This
paper seeks to overview available mitigation for Single Event
Effects, at the hardware- and software-level.

Index Terms—Single Event Effect, Radiation

I. INTRODUCTION

With the continuing trend of higher density devices for
faster processing and lower requirement of electric charge, a
comparable amount of charge can be generated in the semi-
conductor by the passage of cosmic rays or alpha particles.
These charges may, for example, temporarily change memory
contents or commands in a given instruction stream. The
effects of radiation regarding space-borne electronic systems
may penetrate sensitive nodes in these devices and affect its
system functions and behavior [1].

The first satellite inconsistency was first reported in 1975,
by D. Binder et. al on SEU in flip-flops. In 1978, the first
SEU was first observed on earth by alpha particles, caused
by packaging material in a chip and eventually affecting the
Random Access Memory (RAM). In 1979, the first report
on SEU due to comic rays was published, and in 1992, the
first destructive SEE was observed in a memory on a space
operating resource satellite [2].

The phenomenon of Single Event Effect (SEE) arises when
a single energetic particle penetrates these sensitive nodes,
causing glitches to the electronic system or catastrophic fail-
ures at the circuit level [1]. With a variety of possible SEE,
they can either be transient, permanent, or intermittent.

Faults that may affect the system during its lifetime can
be classified into eight basic viewpoints of phenomenological
causes, being of: (i) natural faults, caused by natural phe-
nomena without human interaction; (ii) human-made faults,
resulted by human interaction such as production defects; (iii)
transient faults, presented within a bounded time-frame; and
(iv) permanent faults, given within a continuous time-frame
[3]. This paper aims at reviewing transient fault mitigation.

During the system operation, natural faults can be either
internal, due to the natural process of physical deterioration,
or external, due to the natural process that happens outside the
system boundaries and may cause hardware interference [3].

In fault-tolerant architecture, a fault is a physical defect,
such as a broken transistor. These faults may manifest them-
selves as an error, such that having a bit 0 in place of a bit

1, or by not manifesting itself as an error. An error can be
masked or can result in a user-visible failure [4].

A fault and/or error does not necessarily become an error
and/or a fault, respectively. This can be mitigated by masking
the system at the design level. The effect of an error at a logical
level may not affect the system, and may not propagate to the
architectural level either, as it depends on which instruction
the error will impact. Errors that propagate to the application
level may not be impacted by an error either, as the error may
affect an unused memory location by the application and never
gets triggered [4].

A transient fault may occur once and not persist across the
system, these are often referred to as soft error or as Single
Event Upset. Permanent faults are often called hard fault, and
persists when the fault occurs and may manifest itself as a
repeated error. An intermittent fault occurs repeatedly but not
over the same place in the system [4].

Radiation device hardening and SEE fault tolerance ap-
proaches have been taken to mitigate these issues when they
arise [1], however, the mitigation approaches are dependent on
their fault duration, as tolerating a transient fault requires no
self-repair due to its non-persistence. Fault tolerance schemes
may treat intermittent faults as either transient or permanent,
depending on how often they occur in the system [4].

Due to the many physical phenomena that may lead to
a fault, a variety of techniques are available for mitigating
these issues according to the environment they run. Due to the
transient high-energy particles, cosmic rays may produce alpha
particles or even electromagnetic interference from outside
sources, generating transient faults to the devices [1].

The effects of the fault may change a value of a cell or
transistor output. Due to the one-time disruption, the error
will vanish once the cell or transistor’s output is overwritten.
[4] categorizes permanent phenomena into three categories:
(i) permanent wear-out, making a processor fail due to several
physical issues such as thermal cycling and mechanical stress;
(ii) fabrication defects, by manufacturing chips with inherent
defects; and (iii) design bugs, such as a chip not behaving
correctly due to an internal bug. Some physical phenomena
may lead to intermittent faults, such as loss of connection
between two wires or devices [4].

This work aims at characterizing the types of SEE and the
state-of-the-art that has been accomplished to mitigate these
issues at the circuit- and software-level. The rest of the paper is
organized as follows: section II gives a brief background over



the types of SEE and how they may affect the system, among
with fault metrics and types of errors, section III present some
techniques for mitigating single events at the circuit level,
section IV refers to software-based approaches for single event
mitigation. Finally, section V provides final conclusions.

II. BACKGROUND

With the decrease of dimension size of transistors, wires,
and smaller chips, the tendency to transient and permanent
faults are much higher, as the dimension of the chip may
impact the temperature directly. Given Moore’s law increase
the number of transistors per chip, more opportunities arise
for faults in the field of application and manufacturing. The
complexity of processor design increases the likelihood of
design bugs during production, which may bring permanent
faults to the processor during execution time [4]. This section
overviews the types of SEE and how they arise during the
life-type of a system.

A. Types of SEE

SEE depends on the interaction of a single particle penetrat-
ing the device, which can be caused by the passage of a single
heavy ion by a cosmic ray. As cosmic rays are highly energetic
in space, they may pass through the device and be collected in
the device’s electrodes. The ion produces an electric pulse that
may appear to the device as if it should respond and eventually
causing a failure. High energy protons can also be a cause of
failure, as a proton may have a nuclear reaction in the silicon
device [1].

SEE has a variety of possible effects, each of which is
important, as they cause malfunctioning of devices in space
ionizing radiation environment [1]. These SEE is illustrated in
table II-A with their respective description.

TABLE I
TYPES OF SINGLE EVENT EFFECT [5]

Term Definition
Single event upset A change of state or transient induced by an

energetic particle
Single hard error Causes permanent changes to the operation of

the device
Single event latch-up Loss of device functionality induced by high

current
Single event burnout A condition which causes a device to destruct

due to high current state in a power transistor
Single event effect A measurable effect to a circuit due to an ion

strike
Multiple bit upset Event induced by a single energetic particle

which may cause multiple upsets or transient
Linear energy transfer A measure of energy deposited per unit length

B. Fault tolerance metric

Fault tolerance solution requires experiments to test a
hypothesis or compare with previous works and knowing
which errors may apply within the system. [4] covers several
important metrics on fault tolerance systems, those including
(i) the availability of the system, by verifying the system is
functioning correctly at a specific time; and (ii) reliability, is

the probability that the system has been functioning correctly
from time zero to a specific time.

C. Error detection

Error detection provides a measure of safety, as it is an
important aspect of fault tolerance since the processor cannot
tolerate a problem it is not aware of. Redundancy is funda-
mental to error detection, as it helps the processor detect when
a given error occurs. There are three classes of redundancy,
spatial, temporal and information redundancy [4].

Spatial redundancy adds redundant hardware to the system.
The Dual Modular Redundancy (DMR) is a simple form of
spatial redundancy, which provides error detection by using a
voter system, which then receives the output of all modules
and checks for any error [4].

Temporal redundancy may perform redundant operations,
by requiring a unit to operate twice and finally compare the
results. Temporal redundancy doubles the amount of time for
each operation. However, in comparison to Spatial redundancy,
there is no extra hardware or power cost involved. For reducing
performance cost, some schemes may use pipelining to hide
the latency of a redundant operation [4].

Finally, information redundancy detects when a datum has
been affected by adding bits to it. Schemes such as Error-
detecting Code (EDC) can be used for such redundancy, for
example, by adding a parity bit to a data word and convert into
a codeword. The parity scheme is popular, due to its simplicity
and inexpensive implementation [4].

D. Error recovery

Error detection is enough for providing safety to the system,
but not recovering from the error. By recovering from the error,
it hides the effect of the error from the end-user and allows
the system to resume operation [4]. Two primary approaches
to error recovering is Foward Error Recovery (FER) and
Backward Error Recovery (BER).

FER corrects the error without having to revert to a previous
state. FER can be implemented through physical, temporal,
and information means of redundancy. In FER, if a specific
amount of redundancy is required to determine if an error has
occurred, then additional redundancy is required to correct the
error [4].

BER restores the state of the system to a previously known
good state, known as recovery point on single-core systems
and recovery-line on multi-core systems. The system architect
should think through what state it should be saved for recovery,
where and when to deallocate, the algorithm, and what to do
after the system has been restored [4].

III. HARDWARE MITIGATION

A. Soft errors

[6] explores four single transient mitigations by evaluating
four techniques that can be applied at the circuit level. These
techniques are covered in the next sub-sections.



1) Schmitt Triggers: In high noise applications, the Schmitt
Triggers (ST) works as a replacement for the internal inverter
of a circuit. The ST has a higher dependency over a source-
gate voltage of its P1 and N1 transistors, resulting in an
enhanced robustness over a Voltage Transfer Curve (VTC)
deviation [6].

2) Decoupling Cells: By connecting capacity elements to
the most exposed nodes, one can mitigate transient effects.
The use of decoupling cells increases the total capacity in the
output of a node of the NAND2 gate, resulting in a decrease
of critical charge required to produce a single transient pulse,
which by effect improves signal degradation [6].

3) Sleep Transistors: Circuit blocks that are not in use can
be shut off by using the power-gating strategy, widely used
in low-power designs for reducing chip’s power consumption.
Sleep transistors act as a supply-voltage regulator. When a
sleep transistor is in active mode, it improves the process
variability of a typical logic gate connection to the ground rail
by acting as a voltage regulator. While in standby, the sleep
transistor disconnects the virtual ground from the physical
ground [6].

4) Transistor Reordering: Optimizing transistors arrange-
ments allows reducing current leakage or dealing with bias
temperature instability. This technique modifies the transistor
arrangement by still keeping the same functionality that was
aimed at. The transistor reordering swaps the electrical and
physical characteristics of the logic cells, resulting in suscep-
tibility to soft errors. The robustness of complex gates where
can be improved up to 8% by using this approach and can be
favorable to improve single effect stability of circuits without
including area penalty in complex gates [6].

IV. SOFTWARE MITIGATION

Software approaches can also be used for hardware errors.
The primary interest of using a software redundancy is that
it brings no hardware cost and requires no hardware modi-
fication. The software approach may provide good coverage
of possible errors and can be easily tested comparing to
hardware approaches. The cost of software redundancy may
be significant, as performance may be lost depending on the
core model and software workload, as instruction duplication
requires more processing [4]. The following presents some
solutions for software-based mitigation

A. Selective Code Duplication

In Selective code duplication, only parts of the code are
duplicated, and their results are compared, which reduces fault
coverage but improves code size and execution time overhead.
Multiple techniques use selective code duplication, such as
SWIFT, VAR3+, CDB, and SEDSR.

1) Error detection by duplicated instructions: Error detec-
tion by duplicated instructions (EDDI) consists of inserting
redundant instructions and instructions that also compares the
results produced by the original instruction and the redundant
instructions [4]. The SWIFT scheme by [7] improved upon

EDDI by combining with the control flow checking and opti-
mizing the performance by reducing the number of comparison
instructions.

[8] provides a tool named Compiler Assisted Software Fault
Tolerance (COAST), which provides an automated compiler
modification of software to insert a dual- or triple-modular
redundancy. The approach adds data flow protection to user-
provided programs. By default, the tool replicates all compute
operations and memory loads/stores. while keeping a single
set of control flow operations. The COAST tool provides
Duplicate With Compare (DWC) and TMR protection mode.
The replication and/or synchronization of instructions is fully
automated as part of the compilation process. The produced
software executable is are more tolerant to SEU, ideal for
processing in a high radiation environment. Experiments were
conducted in 30R flight path at the Los Alamos Neutron
Science Center (LANSCE), and neutron beam tests have
shown that COAST provides a significant increase in Mean
Work To Failure (MWTF).

2) Error detection by diverse data and duplicated instruc-
tions: Error Detection by Diverse Data and Duplicated In-
structions (ED4I) is a full code duplication technique, where all
instructions in a block are duplicated. Comparison instructions
are placed after each original and duplicated instruction in each
block to compare their results [9].

3) Overhead reduction: In a Overhead Reduction (VAR3+)
technique, all instructions in a block, except for branch and
store instructions are duplicated. The comparison instructions
have to be placed before load, store, and branch instructions
to compare the results [9].

4) Critical block duplication: In Critical Block Duplication
(CBD) technique, critical blocks have to be identified in the
control flow graph. Any block which has the highest number of
fan-outs in the control flow graph is considered a critical block.
If any mismatch of results is detected, an error is reported [9].

B. Soft error detection using software redundancy

Soft Error Detection Using Software Redundancy (SEDSR)
in an extended version of CBD, however, comparison in-
structions have to be added after the original and duplicated
instruction in each identified block block for comparing results
[9].

V. CONCLUSIONS

With the continuous trend of smaller chip sizes, the ten-
dency of transient and permanent faults are much higher. This
paper sought to characterize the types of SEE and how they
affect a system according to the environment, and what metrics
are important when considering a fault-tolerant design. By
understanding the difference between error detection and error
recovery allows one to seek a solution which may fit their re-
quirements. Multiple fields of mitigation’s have been reviewed,
from a circuit-level techniques to software-level approaches.
Although software mitigation usually impacts performance, it
is a cheaper alternative in comparison to hardware alternatives.



REFERENCES

[1] E. Petersen, Single event effects in aerospace. John Wiley
& Sons, 2011, ch. 1, pp. 1–12. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118084328.ch1

[2] S. Buchner, “Overview of single event effects,” in Proc. 11th Int. School
Effects Radiation Embedded Syst. Space Appl.(SERESSA), 2015, pp. 62–
69.

[3] A. Avizienis, J. . Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan 2004.

[4] D. J. Sorin, Fault Tolerant Computer Architecture. Morgan and Claypool
Publishers, 2009.

[5] The Radiation Effects and Analysis Group (REAG). (2017) Draft
- single event effects specification. National Aeronautics and Space
Administration (NASA). Last accessed on 24/01/2021. [Online].
Available: https://radhome.gsfc.nasa.gov/radhome/papers/seespec.htm

[6] R. Reis, C. Meinhardt, A. L. Zimpeck, L. H. Brendler, and L. Moraes,
“Circuit level design methods to mitigate soft errors,” in 2020 IEEE Latin-
American Test Symposium (LATS), 2020, pp. 1–3.

[7] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“Swift: software implemented fault tolerance,” in International Sympo-
sium on Code Generation and Optimization, 2005, pp. 243–254.

[8] B. James, H. Quinn, M. Wirthlin, and J. Goeders, “Applying compiler-
automated software fault tolerance to multiple processor platforms,” IEEE
Transactions on Nuclear Science, vol. 67, no. 1, pp. 321–327, 2019.

[9] V. B. Thati, J. Vankeirsbilck, N. Penneman, D. Pissoort, and J. Boydens,
“Cdfedt: Comparison of data flow error detection techniques in embedded
systems: An empirical study,” in Proceedings of the 13th International
Conference on Availability, Reliability and Security, ser. ARES 2018.
New York, NY, USA: Association for Computing Machinery, 2018.
[Online]. Available: https://doi.org/10.1145/3230833.3230854


